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1. Introduction 

Let T  denote the interval  0,2 . Let ( ) , 1pL T p   be the Lebesgue 

space of all measurable 2 - periodic functions defined on T  such that  

                       ( )

1

:
p

p

p

T

f f x dx
 

=   
 
 . 

  The Morrey spaces  ( ),

0

pL T
 for a given 0 1   and 1p  , we define 

as the set of functions ( )p

locf L T  such that  

 

 

 

 

 

 

where the supremum is taken over all 

intervals  0,2I  . Note that ( ),

0

pL T
 becomes a Banach spaces, 1 =  

coincides with ( )pL T  and for 0 =  with ( )L T
. If  , 1 20 1    , then  

( ) ( )2 1, ,

0 0

p p
L T L T

 
 . Also, if ( )0

pf L T , then ( )pf L T  and hence  

( )pf L T . The Morrey spaces, were introduced by C. B. Morrey in 1938. The 

( )
( ),

0

1

1

1
: supp

p

p

L T
I

I

f f t dt
I

 −

 
 

=   
 
 


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properties of the these spaces have been investigated intensively by several authors 

and together with weighted Lebesgue spaces ( )pL T  play an important role in the 

theory of partial equations, in the study of local behavior of the solutions of elliptic 

differential equations and describe local regularity more precisely than Lebesgue 

spaces 
pL . The detailed information about properties of the Morrey spaces can be 

found in [14-17], [30], [34], [36], [38], [39] and [46]. 

     In this study we will use the following notations: 

   0: 1,2,3,... , : 0+ += =  . Also, we shall use 1 2, , ,...c c c to denote 

constants depending only on parameters that are not important for the questions of 

our interest   

   Denote by ( )C T
the set of all functions that are realized as the 

restriction to T of elements in ( )C
. Also we define ( ),pL T

 to be closure 

of ( )C T
in ( ),

0

pL T
. 

Note that in this study we investigate the direct and inverse problems of  

approximation theory in Morrey space ( ),pL T
, the closure of the set of 

trigonometric polynomials in ( ),

0

pL T
 with 1 p   . 

The function  

 

( ) ( )
( )

, ,
, : sup , ,p ph L T

h

f f 

 



   +



=     

is called  -th modulus of smoothness ( ), , 0 1pf L T     and 1p  , where  

( ) ( ) ( )
0

, 1 ,
k

h

k

f f x kh
k







− +

=

 
  = − +  

 
  

    The modulus of smoothness 
( )
( ), ,pL T

f

   have the following properties 

[24]: 

    1) ( ), ,p f

   is an increasing function, 

       2) ( ),
0

lim , 0p f




 

→
=  for every ( ), , 0 1pf L T     and 1p  , 

     3) ( ) ( ) ( ), , ,, , ,p p pf g f f  

       +  +  for ( ),, ,pf g L T  

     4) ( ) ( ), , 0, , , ,p pf n n f n 

        

     5) ( ) ( ) ( ), ,,s 1 , , 0p pf s f s 

     +  , 

     6) ( ) ( ), , 0

1
, 1 1 , , .

1
p pf n f n

n
 

    
 

 + +      + 
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     For ( ), ,pf L T  we say that the function f  has derivative f   in the 

sense of ( ),pL T
 if  

 

                           
( )

( ),
0

lim 0
p

h

h
L T

f
f

h 



+→


− = .                                           (1.1) 

Obviously ( ),pf L T . 

        Let ( ) ( ), 1,2,...nS f n =  be the n -th partial sum of the Fourier series of  

( )1L T , i. e. 

( ) ( )0

1

, cos sin ,
2

n

n k k

k

a
S x f a kx b kx

=

= + +  

where ,k ka b are Fourier coefficients of f . 

        We denote by ( )
( )

( ), , 0,1,2,...pn L T
E f n =  the best approximation of 

( ),pf L T  by trigonometric polynomials of degree not exceeding n , i.e., 

( )
( ) ( ) , ,: inf : ,p pn n n nL T L T

E f f T T = −   

where n  denotes the class of trigonometric polynomials of degree at most n . 

          The problems of approximation of approximation theory in the weighted and 

non-weighted Morrey spaces have been investigated in [4-6], [8-9], [18], [23], [24], 

[29], [33] and [37].  In this study a  direct theorem of the Jackson type is 

established in the Morrey spaces ( ), , 0 1pL T    and 1 p   . We also 

prove a theorem on the relationship the best approximation of the functions with 

approximation and differential properties of its derivatives in the Morrey spaces 

( ), , 0 1pL T    and 1 p   . By using the obtained results the estimation is 

established for  - th modulus of smoothness of derivative of the functions. This 

result is the improvement of the result obtained in [29]. Similar problems in 

different spaces have been investigated by several authors (see, for example, [1-

3],[7], [10], [11]  [12], [13], [19-22], [25-29], [31], [32], [40], [41],[42], [44], [45], 

and [47]. 

          Our main results are the following. 

         Theorem1.1. If a function ( ), , 0 1pf L T     and 1 p   has the 

derivative of order 0r  which satisfies the condition 

( ) ( ), , 0 1
r pf L T     and 1 p  , then for every  +  the estimate  
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                             ( )
( ), 1p

r

n L T
E f c n

−
( )

,

1
, , 1,2,...

r

p f n
n




 

= 
 

        (1.2) 

holds with a constant 1 0c   independent of n . 

         If 1 = this result in the Lebesgue spaces ( ) , , 1pL T p p=    was 

indicated in [3, see, Chapter V], and [26]. In case 
0 ,r  +   this result in the 

Lebesgue spaces ( ) ,pL T p =   was proved in [41]. If 0r =  this Theorem in the 

Morrey space ( ), , 0 1,pL T    and 1 p   was proved in [24]. 

         Theorem 1.2. Let ( )
( ) ( ), ,:p pn nL T L T

E f f T = − . If 

( ), , 0 1pf L T     and 1 p   and if the condition  

 

( )
( ),

1

1

p

r

n L T
s

s E f 




−

=

   

is satisfied for some natural number r  and ( )min ,2p = , then f  has the r -th 

derivative 
( )r

f  in the sense of (1.1) and the estimate  

 
( ) ( )

( )

( )
( )

( )
( )

,

, ,

1

1

2

1

, 1,

p

p p

r r

n
L T

r r

n nL T L T
n

f T

c n E f E f n



 


 






−

= +

−

   
 +   

   


 

holds with a constant 2 0c   independent of n . 

       Corollary 1.1. Let ( ), , 0 1pf L T     and 1 p  . If the condition  

( )
( ),

1

1

p

r

n L T
s

s E f 




−

=

   

is satisfied for some natural number r  and ( )min ,2p = , then f  has the r -th 

derivative 
( )r

f  in the sense of (1.1) and the estimate  

 

( )( )
( )

( )
( )

( )
( )

,

, ,

1

1

3

1

, 1 (1.3)

p

p p

r

n
L T

r r

n nL T L T
n

E f

c n E f E f n



 


 






−

= +

   
 +   

   


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holds with a constant 3 0c   independent of n . 

         Note that in the Lebesgue space ( ) , 1pL T p   inequality (1.3) for 

r + was proved without   in [41]. If r + , then an inequality of type (1.3) 

in the weighted Lebesgue spaces was proved in [31]. Also, in the particular case for 

the Lebesgue spaces inequality (1.3) was obtained in [40, (90)]. In case ( )0,r 

inequality (1.3) in weighted Lorentz spaces was proved in [47]. 

         Theorem 1.3. Let ( ), , 0 1pf L T     and 1 p   and  + . 

Assume that the condition 

( )
( ),

1

1

p

r

n L T
s

s E f 




−

=

   

is satisfied for some natural number r  and ( )min ,2p = , then f  has the r -th 

derivative 
( )r

f  in the sense of (1.1) and the estimate  

( ) ( )
( )

( )
( )

( )
( )

,,

,

1

1

4

0

1

1

4

1

1 1
, 1 pp

p

n
rr

n L T
s

r

n L T
s n

f c s E f
n n

c s E f






  




 


+ −

=


−

= +

  
 +   

   

 
+  

 





                           (1.4) 

holds with a constant 4 0c   independent only on n . 

        Note that in cases of , r + and , r +  inequality (1.4) in the 

Lebesgue spaces ( ) , 1pL T p  , was proved without   in [45] and in [42 

respectively. (Also, can be see in [41] ). Also, in the particular case for the classical 

Lebesgue spaces inequality (1.4) was proved in [40, (90)]. In case , r +  

estimate (1.4) in the Morrey spaces ( ), , 0 1,pL T    and 1 p  , was 

proved without   in [29]. This result is the improvement of the result obtained in 

study [29]. 

 

        2. Proofs of main results. 
        We need the following results. 

        Theorem 2.1. [24]. Let ( ), , 0 1pf L T     and 1 p  . Then for 

 +  the estimate  

 

( )
( ), 5pn L T

E f c  ,

1
, , 1,2,...p f n
n




 

= 
 
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holds with a constant 5 0c   independent of n . 

        Lemma 2.1. [24]. If , 1n nT n   and r + , then exists a constant 

6 0c   depending only on ,r p  and   such that 

 

                             
( )

( ) ( ),
, 6 p

p

r r

n n L TL T
T c n T 


 .                                          (2.1) 

          Using Lemma 2.1 about Bernstein inequality related to the trigonometric 

polynomial nT  of degree n  in the Morrey spaces ( ), , 0 1pL T    and 

1 p   and the above emphasized properties of modulus of smoothness 

( ), ,p f

   into account and the proof scheme developed in [44] (see also, [12, p. 

210]  we can prove the following theorem. 

        Theorem 2.2. Let ( ), , 0 1pf L T     and 1 p  . Then for a given 

 +  the estimate  

( ) ( )
( ),,

1

17

0

1
, 1 pp s L T

s

c
f s E f

n n



 





−

=

  
 + +  

   
  

holds, where  min ,2p = and the constant 7 0c   independent of  n . 

          Also, using the proof scheme developed in [35, Theorem 1] we can prove 

following theorem related to the Littlewood- Paley inequality in the Morrey spaces 

( ), , 0 1pL T    and 1 p  . 

         Theorem 2.3. Let ( ), , 0 1pf L T     and 1 p  .Then there exist 

constants 8c  and 9c  depending only on p and   such that 

 

( )

( )

( )
( )

( )

( )

1
,

, ,

1 1

2 2
2 2

8 9

2

, , ,
p

p p
L T

L T L T

c B f x A f x c B f x




 

  
    −

  

= ==

   
    

   
    

for every  + , where  

( ) ( ) ( )
1

2 1

2

, : , , 1,2,..., , : cos sinB f x A f x A f x a x b x




    



  
−

−

=

= = = + . 

         Note that, Theorem 2.2 and 2.3 have been proved in the thesis entitled   

“ N. P. Tozman, Some problems of  approximation theory in Morrey spaces, PhD 

thesis, Balıkesir University, Graduate School of Natural and Applied Sciences, 

Balıkesir, Turkey, (2009), (in Turkish)”. 
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         Proof of Theorem 1.1. The following formula holds: 

 

      ( ) ( ) ( )1 1 2

0 0

... ... .

h h
rr r

h h r rf x dt f x t t t dt + + =  + + + +                               (2.2) 

Using the definition of  -th modulus of smoothness of  ( ), ,p f

  , from (2.2) 

we obtain inequality 

( ) ( )( ), ,, , , 0.
rr r

p pf f 

      +    

Then from the last relation and Theorem 2.1 we obtain inequality (1.2) of Theorem 

1.1. 

        Proof of Theorem 1.2. There exist a sequence of trigonometric polynomials 

 
1n n

T


=
 such that  

( )
( )

( ),, ppn n L TL T
f T E f − = . 

From the conditions of theorem the following expressions holds: 

( )
( )

( ),1 1, 102 2 2
pi i ip L TL T

T T c E f − −−  , 

( )11 2 2 2
1 0

i i i

i i

f T T T V−

 

= =

= + − =  . 

Note that where the convergence is understood in the sense of  ( ),pL T
. 

       Now, we show that for 1,...,j r=  there exist the functions ( ) ( ),p

j x L T   

such that  

( ) ( ) ( )
2

0

i

j

j

i

x V x


=

=  

and  

( ) ( ) ( )j

j x f x = . 

Using (2.1) for 1j =  we obtain 
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( ) ( )
( )

( )

( ) ( )
( )

( )

( ) ( )
( )

( )

( ) ( )
( )

( )

( )
( )

( ) ( )
( )

( )
( )

,

,

0

,

,

,0

0

,

, 0

1

2 2

2
0 0

2 2

2
0

2 2

2 2

2 2
112 2

0 1

2 . (2.3)

p

i i

i

p

i i

i

p

i i

i i p

p

i i

i i p

p

L T

i i
L T

n

i
L T

L T
i n

L T

n

i

L T
i i n

L T

f h f

h

V h V
V

h

V h V
V

h

V h V
V V

h

V h V
V c V

h



















 

= =

=



=



= = +

 + − 
− 

 + − 
 − 

 + − 
 − 

  + − 
  + −  + 
 
 

 + − 
 −  +

 





 

 

From the inequality (2.3) for 0h→  and 0n n  we have  

( ) ( )1f x x = . 

For 2,...,j n= , to prove theorem we use the method of induction. 

         According to [22] the inequality  

 

                 
( ) ( )( )

( )

( )( )
( ),, 12 pp

r r r

n n
L TL T

f S f c E f


−                                      (2.4) 

holds. 

        Let us choose m  such that 
12 2m mn +  . The inequality 

       
( ) ( )

( )

( ) ( )

( )

( ) ( )

( )
2 1

, , ,2 2 2
2

m i i
p p p

r r r r r r

n n
L T L T L T

i m

f T T T T T
  

+ +



= +

−  − + −              (2.5) 

holds. 

       Using (2.1) we have  

      

( ) ( )

( )

( ) ( )
( )

( )
( )

,2 2
,

,

2

132 2

14

2

. (2.6)

pm m
p

p

r r m r

n L TL T

r

n L T

T T c E f

c n E f






+ +

+
− 


 

We use the notation 
, ,

1

:
j

j B  



=

= , where 

, cos sin
2 2

B a x b x   

 
   
   

= + + +   
   

. Using Abel’s  transformation we 

get  
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( ) ( ) ( ) ( )( )

( ) ( )( )

1 1

1

2 2

, , 2 ,
2 1 2 1

1

2 , 2 ,

1

2 .

i i

i

i i

i i

i

B x x x

x x

 

    
 

 

    

 

+ +

+

= + = +

+

 = − + −
 

+ −

 
 

The last relation and (2.4) imply that 

( )
( )

( ) ( )
( )

( )
( )

( )
( )

1 1

,

,

, ,

2 2

, 15 2
2 1 2 1

16 172 2

1

2 2 . (2.7)

i i

pi

i ip

p pi i

L T

L T

i i

L T L T

B x c E f

c E f c E f





 

 

 

 

 

  

+ +

= + = +
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According to Theorem 2.3 and inequality (2.7) we conclude that  
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From (2.5), (2.6) and (2.8), we conclude the required result: 
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This completes the proof of Theorem 1.2. 

        Corollary 1.1 follows immediately from Theorem 1.2. 

        Theorem 1.3 follows immediately from Theorem 2.2 and 1.2. 
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